Key Notes

Chapter-02

Polynomials

- An algebraic expression of the form $a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n-1} x+a_{n}$, where $a_{0}, a_{1}, a_{2} \ldots a_{n}$ are real numbers, n is a non-negative integer and $a_{0} \neq 0$ is called a polynomial of degree n .
- Degree: The highest power of x in a polynomial $\mathrm{p}(\mathrm{x})$ is called the degree of polynomial.
- Polynomials of degrees 1,2 and 3 are called linear, quadratic and cubic polynomials respectively.
- Types of Polynomial:
(i) Constant Polynomial: A polynomial of degree zero is called a constant polynomial and it is of the form $p(x)=k$.
(ii) Linear Polynomial: A polynomial of degree one is called linear polynomial and it is of the form $\mathrm{p}(\mathrm{x})=\mathrm{ax}+\mathrm{b}$ where a, b are real numbers and $a_{0} \neq 0$.
(iii) Quadratic Polynomial: A quadratic polynomial in x with real coefficient is of the form $\quad{ }^{2}+b x+c$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are real numbers with $a \neq 0$.
(iv) Cubical Polynomial: A polynomial of degree three is called cubical polynomial and is of the form $\mathrm{p}(\mathrm{x})=a x^{3}+b x^{2}+c x+d$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are real numbers and $a \neq 0$.
(v) Bi-quadratic Polynomial: A polynomial of degree four is called bi-quadratic polynomial and it is of the form $p(x)=a x^{2}+b x^{3}+c x^{2}+d x+e$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$, e are real numbers and $a \neq 0$.
- The zeroes of a polynomial $p(x)$ are precisely the x-coordinates of the points where the graph of $y=p(x)$ intersects the x-axis i.e. $x=a$ is a zero of polynomial $p(x)$ if $p(a)=0$.
- A polynomial can have at most the same number of zeros as the degree of polynomial.
- For quadratic polynomial $a x^{2}+b x+c \neq 0$) Sum of zeros $=-\underline{v}$ Produce of zeros $=$
- The division algorithm states that given any polynomial $\mathrm{p}(\mathrm{x})$ and polynomial $\mathrm{g}(\mathrm{x})$, there are polynomials $\mathrm{q}(\mathrm{x})$ and $\mathrm{r}(\mathrm{x})$ such that: $p(x)=g(x) \cdot q(x)+r(x), g(x) \neq 0$ where $\mathrm{r}(\mathrm{x})=0$ or degree of $r(x)<$ degree of $g(x)$
- The division algorithm states that given any polynomial $p(x)$ and polynomial $g(x)$, there are polynomials $q(x)$ and $r(x)$ such that: $p(x)=g(x) . q(x)+r(x), g(x)=0$ where $r(x)=0$ or degree of $r(x)$ < degree of $g(x)$.

